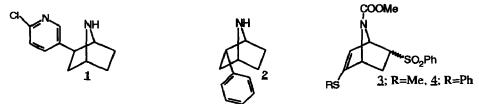


0040-4039(93)E0429-N

Synthesis of Endo-2-Phenyl-7-Azabicyclo[2.2.1]heptane via High Pressure Diels-Alder Reactions of Pyrroles


Rene W.M. Aben, Jan Keijsers, Benno Hams, Chris G. Kruse*, and Hans W. Scheeren*

Department of Organic Chemistry, NSR center for Molecular Structure, Design and Synthesis, Toernooiveld, 6525 ED Nijmegen, The Netherlands

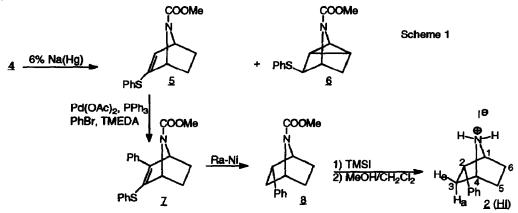
*Solvay Duphar Research Laboratories, PO Box 900, 1380 DA Weesp, The Netherlands

Abstract: A straightforward route to racemic endo-2-phenyl-7-azabicyclo[2.2.1]heptane (an analogue of epibatidine) is described via the high pressure Diels-Alder reaction of 1-methoxycarbonyl-3-phenylthio-pyrrole with phenyl vinyl sulphone.

The recent publications 1,2,3,4 of the synthesis of epibatidine (1) a novel (chloropyridyl)azabicylcoheptane with a highly potent analgesic activity⁵ prompts us to disclose our results about the synthesis of the closely related endo-2-phenyl-7-azabicyclo[2.2.1]heptane (2).

The 7-azabicycloheptane skeleton can be constructed in one step by the Diels-Alder reaction of an activated pyrrole with an electron-poor carbon carbon double-bond system. Pyrroles from which the aromaticity is reduced by an electron-withdrawing substituent on the nitrogen atom undergo Diels-Alder reactions at normal pressure with electron-poor acetylenes⁶ as has been successfully applied recently in the synthesis of epibatidine². Under high pressure these activated pyrroles react also with electron-poor alkenes^{7,8,9} which increase the flexibility of this route to 7-azabicycloheptanes even more.

In a preceding paper we showed that 1-methoxycarbonyl-3-methylthio or -3-phenylthiopyrrole reacted easily with phenyl vinyl sulphone at 12 Kbar to 2-thiosubstituted 5-phenylsulphonyl-7-methoxycarbonyl-7-azabicyclo[2.2.1]hept-2-enes⁹ $\underline{3}$ and $\underline{4}$ in 80% yield.


We found that compound $\underline{4}$ could be a useful precursor for the synthesis of 2-arylsubstituted azabicycloheptanes by the route described in scheme 1.

In the first step the phenyl sulphonyl group was removed by reduction with 6% sodium amalgam giving 5 in a moderate yield of $30\%^{10}$. An interesting sideproduct of this reaction appeared to be the tricyclic isomer <u>6</u> which was also obtained in a yield of 25-30%.

Introduction of the phenyl group was achieved via the palladium catalyzed vinylation reaction of bromobenzene (Heck-reaction)¹¹ to $\underline{7}$ in a yield of 35-40%. Reduction of $\underline{7}$ with Raney Nickel gave exclusively

the endo-7-carbomethoxy-2-phenyl-7-azabicycloheptane $\underline{8}$ (yield 70%) as appeared from detailed analysis of the H¹-NMR spectra of $\underline{2}^{12}$. Removal of the carbomethoxy group with trimethylsilyl iodide led to a HI salt of $\underline{2}$ (containing 0.64 equivalents of HI, mp. 160-165 °C, yield 65%)¹².

Further work towards this type of biosteric analogues of epibatidine via high pressure Diels-Alder reactions of pyrroles including alternative approaches with the aryl group in the pyrrole or in the dienophile is in progress.

Acknowledgment

We thank dr. P.J. Andree (Solvay Duphar research laboratories) for the careful analysis of the NMR spectra of 2.

References and notes:

- 1. Broka, C.A., Tetrahedron Lett. 1993, 34, 3251.
- 2. Huang, D.F.; Shen, T.Y., Tetrahedron Lett. 1993, 34, 4477.
- 3. Fletcher, S.R.; Baker, R.; Chambers, M.S.; Hobbs, S.C.; Mitchel, P.J., Chem. Comm. 1993, 1216.
- 4. Corey, E.J.; Loh, Teck-Peng; AchyuthaRao, Sidduri; Daley, Donette C.; and Sarshar, Sepehr., J. Org. Chem. 1993, 58, 5600.
- 5. Spande, T.F.; Garraffo, H.M.; Edwards, M.W.; Yeh, H.J.C.; Pannel, L.; Daly, J.W., J. Am. Chem. Soc. 1992, 114, 3475.
- 6. Altenbach, H.J.; Constant, D.; Martin, H.D.; Mayer, B. and Vogel, E., Chem. Ber. 1991, 124, 79.
- 7. Toube, T.P.; Pyrroles, Jones, R.A. ed., John Wiley and Sons, Inc., New York, 1992, part 2, pp. 92-95.
- 8. Drew, M.G.B.; George, A.V.; Isaacs, N.S., and Rzepa, H.S., J. Chem. Soc. Perkin Trans. I, 1985, 1277.
- 9. Keijsers, J.; Hams, B.; Kruse C.G. and Scheeren, H.W., Heterocycles 1988, 29, 79.
- 10. Efforts to increase the yield using ultrasonic irradiation led to reduction of the double bond as well.
- 11. Trost, B.M. and Tanigawa, Y., J. Am. Chem. Soc. 1979, 101, 4743.
- 12. <u>endo-2-phenyl-7-azabicyclo[2.21]heptane (2)</u>

H¹-NMR (CDCl₃): The shifts of H₁ and H₄ (3.82); H₂ (3.38) and H_{3e} (2.08) are very close to the shifts of the corresponding protons of the endo analogue² of epibatidine (**1**). High-resolution ms Calcd for $C_{12}H_{15}N$ (M⁺): 173.12045. Found: 173.12043. HI salt of **2** (with 0.64 eq HI) mp. 160-165 °C from acetonitril. H¹-NMR (CDCl₃): δ (ppm)= 1.54-1.78 (m, 3H, H-5a, H-6a and H-6e), 1.74 (dd, 1H, J_{3a,3e}=13Hz, J_{3a,2e}=5.5Hz, H-3a), 1.97 (m, 1H, H-5e), 2.38 (dddd, 1H, J_{3e,3a}=13Hz, J_{3e,2e}=12.5Hz, J_{3e,4}=5Hz, J_{3e,5e}=3Hz, H-3e), 3.74 (dt, 1H, J_{2e,3e}=12.5Hz, J_{2e,3a}=5.5Hz, J_{2e,1}=5Hz, H-2e), 4.12 (m, 2H, H-1and H-4), 5.4 (br, NH₂⁺), 7.19-7.38 (m, 5H, arom.-H).

(Received in UK 19 November 1993; accepted 17 December 1993)